Material komposit

 Material komposit adalah material yang terbuat dari dua bahan atau lebih yang tetap terpisah dan berbeda dalam level makroskopik selagi membentuk komponen tunggal.

Bahan komposit (atau komposit) adalah suatu jenis bahan baru hasil rekayasa yang terdiri dari dua atau lebih bahan dimana sifat masing-masing bahan berbeda satu sama lainnya baik itu sifat kimia maupun fisikanya dan tetap terpisah dalam hasil akhir bahan tersebut (bahan komposit).

Bahan komposit memiliki banyak keunggulan, diantaranya berat yang lebih ringan, kekuatan dan kekuatan yang lebih tinggi, tahan korosi dan memiliki biaya perakitan yang lebih murah karena berkurangnya jumlah komponen dan baut-baut penyambung. Kekuatan tarik dari komposit serat karbon lebih tinggi daripada semua paduan logam. Semua itu menghasilkan berat pesawat yang lebih ringan, daya angkut yang lebih besar, hemat bahan bakar dan jarak tempuh yang lebih jauh.

Militer Amerika Serikat adalah pihak yang pertama kali mengembangkan dan memakai bahan komposit. Pesawat AV-8D mempunyai kandungan bahan komposit 27% dalam struktur rangka pesawat pawa awal tahu 1980-an. Penggunaan bahan komposit dalam skala besar pertama kali terjadi pada tahun 1985. Ketika itu Airbus A320 pertama kali terbang dengan stabiliser horisontal dan vertikal yang terbuat dari bahan komposit. Airbus telah menggunakan komposit sampai dengan 15% dari berat total rangka pesawat untuk seri A320, A330 dan A340.

Contoh material komposit

Serat kaca (glass fibre) adalah material yang umum digunakan sebagai serat. Namun, teknologi komposit saat ini telah banyak menggunakan karbon murni sebagai serat. Serat karbon memiliki kekuatan yang jauh lebih baik dibanding serat kaca tetapi biaya produksinya juga lebih mahal. Komposit dari serat karbon memiliki sifat ringan dan juga kuat. Komposit jenis ini banyak digunakan untuk struktur pesawat terbang, alat-alat olahraga, dan terus meningkat digunakan sebagai pengganti tulang yang rusak.

Selain serat kaca, polimer yang biasanya menjadi matriks juga dapat dipakai sebagai serat atau penguat. Contohnya, kevlar merupakan serat polimer yang sangat kuat dan dapat meningkatkan toughness dari material komposit. Kevlar dapat digunakan sebagai serat dari produk komposit untuk struktur ringan yang handal, misalnya bagian kritis dari struktur pesawat terbang. Sebenarnya, material komposit bukanlah pengguaan asli dari kevlar. Kevlar dikembangkan untuk pengganti baja pada ban radial dan untuk membuat rompi atau helm antipeluru.

Sedangkan untuk matriks, kebanyakan material komposit modern menggunakan plastik thermosetting, yang biasanya disebut resin. Plastik adalah polimer yang mengikat serat dan membantu menentukan sifat fisik dari material komposit yang dihasilkan. Plastik termosetting berwujud cair tetapi akan mengeras dan menjadi rigid ketika dipanaskan. Plastik ini memiliki tahanan terhadap serangan zat kimia yang baik meskipun berada pada lingkungan ekstrim.

Pada material komposit dikenal istilah lamina dan laminate. Lamina adalah satu lembar komposit dengan satu arah serat tertentu, sedangkan laminate adalah gabungan beberapa lamina. Laminate dibuat dengan cara memasukkan pre-preg lamina ke dalam autoclave selama selang waktu tertentu dan dengan tekanan serta temperatur tertentu pula. Auroclave adalah suatu alat semacam oven bertekanan untuk menggabungkan lamina.

Dibanding dengan material konvensional keunggulan komposit antara lain yaitu memiliki kekuatan yang dapat diatur (tailorability), tahanan lelah (fatigue resistance) yang baik, tahan korosi, dan memiliki kekuatan jenis (rasio kekuatan terhadap berat jenis) yang tinggi.

Manfaat utama dari penggunaan komposit adalam mendapatkan kombinasi sifat kekuatan serta kekakuan tinggi dan berat jenis yang ringan. Dengan memilih kombinasi material serat dan matriks yang tepat, kita dapat membuat suatu material komposit dengan sifat yang tepat sama dengan kebutuhan sifat untuk suatu struktur tertentu dan tujuan tertentu pula.

Penerbangan modern, baik sipil maupun militer, adalah contoh utamanya. Keduanya akan menjadi sangat tidak efisien tanpa adanya material komposit. Material komposit canggih kini telah umum digunakan pada bagian sayap dan ekor, propeller, bilah rotor, dan juga struktur internal pesawat terbang. Selain aplikasi di industri dirgantara, dewasa ini material komposit telah banyak juga digunakan untuk badan mobil F1, alat-alat olahraga, struktur kapal dan industri migas.


Hambatan dalam aplikasi material komposit umumnya adalah soal biaya. Meskipun sering kali proses manufaktur material komposit lebih efisien, namun material mentahnya masih terlalu mahal. Material komposit masih belum bisa secara total menggantikan material konvensional seperti baja, tetapi dalam banyak kasus kita memiki kebutuhan akan hal itu. Tidak diragukan, dengan teknologi yang terus berkembang, pengunaan baru dari material komposit akan bermunculan. Kita belum melihat semua yang material komposit dapat lakukan.

Pada umumnya bentuk dasar suatu bahan komposit adalah tunggal dimana merupakan susunan dari paling tidak terdapat dua unsur yang bekerja bersama untuk menghasilkan sifat-sifat bahan yang berbeda terhadap sifat-sifat unsur bahan penyusunnya. Dalam prakteknya komposit terdiri dari suatu bahan utama (matrik – matrix) dan suatu jenis penguatan (reinforcement) yang ditambahkan untuk meningkatkan kekuatan dan kekakuan matrik. Penguatan ini biasanya dalam bentuk serat (fibre, fiber).

Sekarang, pada umumnya komposit yang dibuat manusia dapat dibagi kedalam tiga kelompok utama:
1. Komposit Matrik Polimer (Polymer Matrix Composites – PMC)
2. Komposit Matrik Logam (Metal Matrix Composites – MMC)
3. Komposit Matrik Keramik (Ceramic Matrix Composites – CMC)

Komposit Matrik Polimer (Polymer Matrix Composites – PMC) – Bahan ini merupakan bahan komposit yang sering digunakan disebut, Polimer Berpenguatan Serat (FRP – Fibre Reinforced Polymers or Plastics) – bahan ini menggunakan suatu polimer-berdasar resin sebagai matriknya, dan suatu jenis serat seperti kaca, karbon dan aramid (Kevlar) sebagai penguatannya.
Komposit Matrik Logam (Metal Matrix Composites – MMC) – ditemukan berkembang pada industri otomotif, bahan ini menggunakan suatu logam seperti aluminium sebagai matrik dan penguatnya dengan serat seperti silikon karbida.
Komposit Matrik Keramik (Ceramic Matrix Composites – CMC) – digunakan pada lingkungan bertemperatur sangat tinggi, bahan ini menggunakan keramik sebagai matrik dan diperkuat dengan serat pendek, atau serabut-serabut (whiskers) dimana terbuat dari silikon karbida atau boron nitrida

Komposit Matrik Polimer

Sistem resin seperti epoksi dan poliester mempunyai batasan penggunaan dalam manufaktur strukturnya, dikarenakan sifat-sifat mekanik tidak terlalu tinggi dibandingkan sebagai contoh sebagian besar logam. Bagaimanapun, bahan tersebut mempunyai sifat-sifat yang diinginkan, sebagian besar khususnya kemampuan untuk dibentuk dengan mudah kedalam bentuk yang rumit.
Bahan seperti kaca, aramid dan boron mempunyai kekuatan tarik dan kekuatan tekan yang luar biasa tinggi tetapi dalam ‘bentuk padat’ sifat-sifat ini tidak muncul. Hal ini berkenaan dengan kenyataan ketika ditegangkan, serabut retak permukaan setiap bahan menjadi retak dan gagal dibawah titik tegangan patah teoritisnya. Untuk mengatasi permasalahan ini, bahan diproduksi dalam bentuk serat, sehingga, meskipun dengan jumlah serabut retak yang terjadi sama, serabut retak tersebut terbatasi dalam sejumlah kecil serat dengan memperlihatkan sisa kekuatan teoritis bahan. Oleh karena itu seikat serat akan mencerminkan lebih akurat kinerja optimum bahan. Bagaimanapun juga satu serat dapat hanya memperlihatkan sifat-sifat kekuatan tarik sesuai panjang serat, seperti halnya serat dalam suatu tali.

Jika sistem resin dikombinasikan dengan serat penguat seperti kaca, karbon dan aramid, sifat-sifat yang luarbiasa dapat diperoleh. Matrik resin menyebarkan beban yang dikenakan terhadap komposit antara setiap individu serat dan juga melindungi serat dari kerusakan karena abrasi dan benturan. Kekuatan dan kekakuan yang tinggi, memudahkan pencetakan bentuk yang rumit, ketahanan terhadap lingkungan yang tinggi dengan berat jenis rendah, membuat kesimpulan komposite lebih superior terhadap logam dalam banyak aplikasi.

Bila Komposit Matrik Polimer mengabungkan sistem resin dan serat penguat, sifat-sifat yang dihasilkan bahan komposit akan memadukan beberapa hal sifat-sifat yang dimiliki oleh resin dan yang dimiliki oleh serat.

Secara umum, sifat-sifat komposit ditentukan oleh:

1. Sifat-sifat serat

2. Sifat-sifat resin

3. Rasio serat terhadap resin dalam komposit (Fraksi Volume Serat – Fibre Volume Fraction)
4. Geometri dan orientasi serat pada komposit

Bahan komposit dibentuk pada saat yang sama ketika struktur tersebut dibuat. Hal ini berarti bahwa orang yang membuat struktur menciptakan sifat-sifat bahan komposit yang dihasilkan, dan juga proses manufaktur yang digunakan biadanya merupakan bagian yang kritikal yang berperanan menentukan kinerja struktur yang dihasilkan.

Pembebanan
Terdapat empat beban langsung utama dimana setiap bahan dalam suatu struktur harus menahannya: tarik, tekan, geser/lintang dan lentur

Tarik
Gambar dibawah memperlihatkan beban tarik yang diterapkan pada suatu komposit. Reaksi komposit terhadap beban tarik sangat tergantung pada sifat kekakuan dan kekuatan tarik dari serat penguat, dimana jauh lebih tinggi dibandingkan dengan resinnya.

Tekan
Gambar dibawah ini memperlihatkan suatu komposit dibawah beban tekan. Disini sifat daya rekat dan kekakuan dari sistem resin adalah penting, sebagaimana resin menjaga serat sebagai kolom lurus dan menjaganya dari tekukan (buckling)

Geser/Lintang
Gambar dibawah ini memperlihatkan suatu komposit dikenakan beban geser. Beban ini mencoba untuk meluncurkan setiap lapisan seratnya. Dibawah beban geser resin memainkan peranan utama, memindahkan tegangan melintang komposit. Untuk membuat komposit tahan terhadap beban geser, unsur resin harus tidak hanya mempunyai sifat-sifat mekanis yang baik tetapi juga daya rekat yang tinggi terhadap serat penguat.

Lenturan
Beban lentursebetulnya merupakan kombinasi beban tarik, tekan dan geser. Ketika beban seperti diperlihatkan, bagian atas terjadi tekan, bagian bawah terjadi tarik dan bagian tengah lapisan terjadi geser.

Sistem-sistem Resin

Apapun sistem resin yang digunakan dalam bahan komposit akan memerlukan sifat-sifat berikut:

1. Sifat-sifat mekanis yang bagus

2.Sifat-sifat daya rekat yang bagus

3. Sifat-sifat ketangguhan yang bagus

4. Ketahanan terhadap degradasi lingkungan bagus

Sifat-sifat Mekanis Sistem Resin Gambar dibawah memperlihatkan kurva tegangan/regangan untuk suatu sistem resin ideal. Kurva untuk resin menunjukkan kekuatan puncak tinggi, kekakuan tinggi (ditunjukkan dengan kemiringan awal) dan regangan tinggi terhadap kegagalan. Hal ini berarti bahwa resin pada awalnya kaku tetapi pada waktu yang sama tidak akan mengalami kegagalan getas.



Seharusnya dicatat dimana ketika suatu komposit di bebani tarik, untuk mencapai sifat-sifat mekanis yang optimal dari komponen serat, resin harus mampu berubah panjang paling tidak sama dengan serat. Gambar dibawah ini memberikan regangan terhadap kegagalan yang dimiliki untuk serat kaca-E, serat kaca-S, serat aramid, dan serat karbon berkekuatan tinggi (yaitu bukan dalam bentuk komposit). Disini terlihat, sebagai contoh, serat kaca-S dengan perpanjangan 5,3%, akan membutuhkan resin dengan perpanjangan paling tidak sama dengan nilai tersebut untuk mencapai sifat tarik yang maksimum.



Sifat-sifat Daya rekat Sistem Resin Daya rekat yang tinggi antara resin dan serat penguat diperlukan untuk apapun jenis sistem resin. Hal ini akan menjamin bahwa beban dipindahkan secara efisiensi dan akan menjaga pecahnya atau lepasnya ikatan serat dan resin ketika ditegangkan.

Sifat Ketangguhan Sistem Resin Ketangguhan adalah suatu ukuran dari ketahanan bahan terhadap propaganda retak, tetapi dalam komposit hal ini akan susah untuk diukur secara akurat. Bagaimanapun juga, kurva tegangan dan regangan yang dimiliki sistem resin menyediakan beberapa indikasi ketangguhan bahan. Sistem resin dengan regangan terhadap kegagalan yang rendah akan cenderung menciptakan komposit yang getas, dimana retak dapat mudah terjadi.

Sifat terhadap Lingkungan Sistem Resin Ketahanan terhadap lingkungan, air dan substansi agresif lain yang bagus, bersama-sama dengan kemampuan untuk bertahan terhadap siklus tegangan konstan, adalah sifat yang paling esensi untuk apapun jenis sistem resin. Sifat-sifat ini secara khusus penting untuk penggunaan pada lingkungan laut.

2. Proses Pembuatan Komposit

Proses yang sering digunakan dalam pembuatan komposit adalah Proses Hand LayUp, Proses spray up, Filamen-Winding  dan   Sheet-Moulding Compound (Smith W.F.,1999). Adapun proses    Hand Lay-Up adalah proses pabrikasi dari material komposit dengan cara  cairan resin yang telah diberikan katalis dan kemudian meletakkan diatas penguat (fibre) yang telah diletakkan pada cetakan . Proses hand lay-up mudah dilakukan dan biaya sangat minimal   (Taurista A. Y, 2005).   Pada gambar 1 menguraikan  masing-masing proses dalam pembuatan komposit berbasis resin polyester yang sering dilakukan.      

  

 Proses  Hand Lay-Up  dipakai dalam proses ini karena proses fabrikasi dari proses ini sangat mudah dan dapat dilakukan dalam skala kecil.    Selain bahan pengikat dan bahan penguat, material komposit juga tersusun dari beberapa bahan tambahan yang lainnya. Bahan tambahan terdebut memiliki berbagai fungsi sesuai dengan jenisnya(Surdia T.,1989), yaitu:  Aditif,   Hardener dan Katalisator Aditif, berupa bahan tambahan yang digunakan untuk meningkatkan kemampuan pemrosesan atau untuk mengubah kualitas dan sifat produk dengan menambahkan bahan tersebut pada bahan pokok yaitu polymer (resin). Bahan aditif yang biasa dipakai adalah: Pigmen atau pewarna, disamping untuk memberi nilai estetis yang tinggi dengan mewarnai hasil produk yang berfungsi untuk melindungi dari pengaruh sinar karena mampu menyerap dan memantulkan jenis sinar tertentu. Filler merupakan material padat yang ditambahkan pada polymer biasanya dalam bentuk partikel atau serat untuk mengubah sifat-sifat mekaniknya atau untuk mengurangi harga material. Alasan yang lain dalam penggunaan filler adalah untuk memperbaiki stabilitas bentuk dan panas.conto-contoh pengisi yang digunakan  dalam polymer: serat selulosik dan bedak (powder), bedak silica (SiO2), kalsiun karbonat (CaCO3) dan serat-serat kaca, logam, karbon atau polymer yang lain. filler dapat berfungsi sebai pengencer, penguat, pelindung, penyerap, penghantar listrik, perbaikan deformasi termal dan keperluan yang lain.  Hardener, bahan yang memungkinkan tejadinya proses curing, yaitu proses pengerasan pada resin. Hardener ini terdiri dari dua bahan yaitu katalisator dan accelerator. Katalisator dan accelerator akan menimbulkan panas, pengaruh panas ini diperlukan untuk mempercepat proses pengeringan sehingga bahan menjadi kuat. Namun apabila panasnya terlalu tinggi maka akan merusak ikatan-ikatan antar molekul dan juga akan merusak seratnya. Katalisator, bahan yang mempercepat terbukanya ikatan rangkap molekul polimrt kemudian akan terjadi pengikatan-pengikatan antar molekul-molekulnya. Katalisator yang digunakan adalah Methyl Ethyl Ketone Peroxide (MEKP) hasil dari reaksi Methyl Ethyl Ketone dengan Hidrogen Peroxide. Produk dari reaksi ini merupakan sebuah percampuran sesungguhnya dari dua campuran ganda atau majemuk peroxide yang berbeda yang disebut monomer dan dimer. Setiap campuran majemuk ini menunjukkan sebuah perbedaan reaksi terhadap cobalt.   Accelerator  ,  bahan yang mempercepat terjadinya ikatan-ikatan diantara molekul-molekul yang sudah mempunyai ikatan tunggal dan untuk mempercepat proses curing (pengerasan). Sebagai accelerator dipakai cobalt yang digunakan untuk mempercepat terjadinya proses curing.  

 

Komposit Kayu

Komposit kayu merupakan istilah untuk menggambarkan setiap produk yang terbuat dari lembaran atau potongan–potongan kecil kayu yang direkat bersama-sama (Maloney,1996). Mengacu pada pengertian di atas, komposit  serbuk kayu plastik adalah komposit yang terbuat dari plastik sebagai matriks dan serbuk kayu sebagai pengisi (filler), yang mempunyai sifat gabungan keduanya. Penambahan filler ke dalam matriks bertujuan mengurangi densitas, meningkatkan kekakuan, dan mengurangi biaya per unit volume. Dari segi kayu, dengan adanya matrik polimer didalamnya maka kekuatan dan sifat fisiknya juga akan meningkat (Febrianto, 1999).

Pembuatan komposit dengan menggunakan matriks dari plastik yang telah didaur ulang, selain dapat meningkatkan efisiensi pemanfaatan kayu, juga dapat mengurangi pembebanan lingkungan terhadap limbah plastik disamping menghasilkan produk inovatif sebagai bahan bangunan pengganti kayu. Keunggulan produk ini antara lain : biaya produksi lebih murah, bahan bakunya melimpah, fleksibel dalam proses pembuatannya, kerapatannya rendah, lebih bersifat biodegradable (dibanding plastik), memiliki sifat-sifat yang lebih baik dibandingkan bahan baku asalnya, dapat diaplikasikan untuk berbagai keperluan, serta bersifat dapat didaur ulang (recycleable). Beberapa contoh penggunaan produk ini antara lain sebagai komponen interior kendaraan (mobil, kereta api, pesawat terbang), perabot rumah tangga, maupun komponen bangunan (jendela, pintu, dinding, lantai dan jembatan) (Febrianto, 1999: Youngquist, 1995).

Aluminium Matrix Composites

Salah satu dari jenis komposit yang dipakai luas dalam berbagai aplikasi adalah komposit Al/Al203. Komposit ini adalah pengembangan dari komposit bermatriks logam yaitu aluminium, biasa disebut Aluminium Matrix Composites (AMCs) dengan alumina (Al203) sebagai fasa penguat.

Bertitik tolak dari pengertian komposit, maka komposit Al-Al203 diharapkan dapat menggabungkan sifat terbaik dari matriks aluminium (Al) sebagai material yang ringan, konduktivitas panas dan listrik baik, serta ketahanan korosi tinggi (mudah membentuk lapisan oksida yang kuat dan tahan terhadap korosi) dengan penguat alumina (Al2O3) yang memiliki kekerasan tinggi (hard) sehingga tahan terhadap wear, kekuatan (strength) dan kekakuan (stiffness) tinggi, sifat dielektrik yang excellent dari DC ke frekuensi GHz, konduktivitas termal baik, kapabilitas ukuran dan bentuk yang baik, serta resisten terhadap serangan asam kuat dan alkali pada temperatur tinggi.

Aluminium sebagai matriks pada komposit Al/Al2O3, merupakan logam dengan kelimpahan terbesar di kerak bumi. Selain itu, logam ini memiliki melting point yang relatif rendah yaitu 6580C, sehingga dengan penambahan unsur seperti tembaga (Cu), silikon (Si), atau magnesium (Mg) akan menghasilkan paduan aluminium yang memiliki kekuatan yang besar. Namun, jika dibandingkan dengan kekuatan baja paduan, maka paduan aluminium masih berada jauh di bawahnya. Sementara itu, beberapa kekurangan dari logam ini seperti: stiffness yang rendah, koefisien ekspansi termal yang sulit dikontrol, tidak memilki resisten yang baik terhadap abrasi dan wear, serta sifat “miskin”nya pada temperatur tinggi. Kombinasi dari keunggulan dan kelemahan di atas, menjadikan aluminium sebagai logam yang paling banyak dijadikan obyek riset pada komposit yang bermatrik logam.

Tentu saja, berbeda antara aluminium dengan alumina (Al2O3), walaupun unsur utama penyusun kedua material ini sama. Alumina (Al2O3) banyak digunakan dalam fabrikasi material keramik, karena merupakan bahan baku yang menghasilkan keramik dengan performa tinggi dan hemat biaya (cost effective). Beberapa aplikasi khusus dari alumina (Al2O3) yaitu Gas laser tubes (tabung laser gas), wear pads (Baju anti peluru), seal rings, isolator lisrik temperatur dan voltase tinggi, Furnace liner tubes, Thread and wire guides, electronic substrates, Senjata balistik, abrasion resistant tube and elbow liners, thermometry sensors, laboratory instrument tubes and sample holders, instrumentation parts for thermal property test machines, dan media gerinda.

Ikatan antar atom pada alumina merupakan ionic bonding yang kuat, tidak heran jika memiliki karakteristik yang diinginkan. Artinya, ia tetap stabil walaupun pada temperatur yang sangat tinggi, karena membentuk fasa kristal heksagonal alpha (α-hexagonal) yang sangat stabil. Pada oksida keramik, fasa ini merupakan yang paling kuat dan kaku. Lebih lanjut, fasa ini memiliki kekerasan tinggi dan sifat dielektrik yang excellent. Dengan demikian, banyak digunakan dalam cakupan aplikasi yang sangat luas.

Alumina murni, memiliki fungsi ganda baik sebagai atmosfer pengoksidasi maupun pereduksi sampai 19250C. Sedangkan kehilangan berat material ini dalam ruang vakum berkisar dari 10-7 sampai 10-6 g/cm2.det di atas temperatur 17000C sampai 20000C. Kemudian dari pada itu, alumina sangat resisten terhadap serangan segala gas kecuali fluorine, dan tahan terhadap semua reagen terkecuali asam hydrofluoric dan phosphosric. Adapun serangan pada suhu tinggi, alumina dengan kemurnian rendah, mudah diserang oleh partikulat gas logam alkali.

Komposit Al/Al2O3

Telah dijelaskan, sifat-sifat dari komponen penyusun komposit Al/Al2O3 yang terdiri dari aluminium sebagai matriks dan alumina sebagai fasa penguat. Dalam hal ini, banyak keunggulan dari AMCs jika dibandingkan dengan aluminium maupun paduan aluminium yang tidak dikuatkan, yaitu:

  • Greater strength (kekuatan lebih besar)
  • Improved stiffness (kekakuan diperbaiki)
  • Reduced density/weight (mengurangi densitas/berat)
  • Improved high temperature properties (memperbaiki sifat temperatur tinggi)
  • Controlled thermal expansion coefficient (koefisien ekspansi termal terkontrol)
  • Thermal/heat management
  • Enhanced and tailored electrical performance (peningkatan performa dan kinerja elektrik)
    • · Improved abrasion and wear resistance (memperbaiki ketahanan abrasi dan aus)
    • · Control of mass (especially in reciprocating applications) (control massa (terutama dalam aplikasi khusus), dan
      • · Improved damping capabilities (memperbaiki kapabilitas damping)

Keunggulan-keunggulan di atas, terlihat dari apresiasi yang lebih baik pada alumunium murni yang semula memiliki modulus elastic 70 GPa meningkat menjadi 240 GPa dengan diberi penguat 60% volume serat alumina yang kontinu. Sebaliknya, pemberian 60% volume penguat dalam aluminium murni justru menurunkan koefisien ekspansi dari 24 ppm/0C menjadi 7 ppm/0C. Hal ini, menunjukkan bahwa sesuatu hal yang mungkin mengadakan perubahan terhadap properties aluminium sampai 2 atau 3 tingkat dengan penambahan variasi volume penguat yang sesuai.

Sistem komposit AMCs menawarkan kombinasi dari properties yang sedemikian rupa, yang dari tahun ke tahun telah dicoba dan digunakan di dalam banyak aplikasi-aplikas structural, fungsional dan bukan structural di dalam bidang engineering yang bermacam-macam. Kekuatan yang menggerakkan untuk penggunaan AMCs ini meliputi keunggulan dalam aspek performa, ekonomi dan lingkungan. Penggunaan utama dari AMCs ini di dalam sector transportasi yang memberikan keuntungan seperti pemakaian bahan bakar yang lebih sedikit, suara yang kecil, dan menurunkan emisi di udara. Dengan melihat kecenderungan perubahan peraturan yang semakin ketat di bidang lingkungan dan penekanan pada perbaikan aspek keekonomian bahan bakar, penggunaan AMCs pada sektor transportasi akan diutamakan dan tidak bisa terelakkan untuk tahun mendatang.

AMCs diharapkan dapat mengganti bahan-bahan monolitik seperti paduan aluminium, paduan besi, paduan titanium, dan polimer berbasis komposit dalam aplikasi tertentu. Sekarang, dengan penggantian bahan monolitik dengan AMCs dalam system rekayasa semakin bertambah luas. Seakan ada yang memaksa kepada keperluan untuk merancang ulang keseluruhan system untuk mendapatkan keuntungan dari penambahan berat dan volume.

Beberapa jenis dari komposit AMCs berdasarkan bentuk reinforce, adalah sebagai berikut (komposit Al/Al2O3, termasuk dalam no. 1, 2, dan 3):

1.      Particle-reinforced AMCs (PAMCs)

2.      Whisker-or short fibre-reinforced AMCs (SFAMCs)

3.      Continuous fibre-reinforced AMCs (CFAMCs)

4.      Mono filament-reinforced AMCs (MFAMCs)

0 komentar:

Post a Comment